Dimensionality Reduction Based on Low Rank Representation
نویسندگان
چکیده
Dimensionality Reduction is a common way to solve the problem of ‘curse of dimensions’, especially for image processing. Among all these methods, the linear methods are believed to have better performance in actual databases. This paper proposes a novel unsupervised linear dimensionality reduction method that based on low rank representation which aims at finding the subspace structure of the original data sets. This method named LRRDR tries to preserve the subspace structure of the original data therefore is better than the global dimensionality reduction methods like PCA. The experiments compare PCA, NPE, LRRDR and SPP and the results show that LRRDR outperforms the other methods.
منابع مشابه
Large Margin Low Rank Tensor Analysis
We present a supervised model for tensor dimensionality reduction, which is called large margin low rank tensor analysis (LMLRTA). In contrast to traditional vector representation-based dimensionality reduction methods, LMLRTA can take any order of tensors as input. And unlike previous tensor dimensionality reduction methods, which can learn only the low-dimensional embeddings with a priori spe...
متن کاملA Monte Carlo-Based Search Strategy for Dimensionality Reduction in Performance Tuning Parameters
Redundant and irrelevant features in high dimensional data increase the complexity in underlying mathematical models. It is necessary to conduct pre-processing steps that search for the most relevant features in order to reduce the dimensionality of the data. This study made use of a meta-heuristic search approach which uses lightweight random simulations to balance between the exploitation of ...
متن کاملKernel Locality Preserving Low-Rank Representation
Classification based on Low-Rank Representation (LRR) has been a hot-topic in the field of pattern classification. However, LRR may not be able to fuse the local and global information of data completely and fail to represent nonlinear samples. In this paper, we propose a kernel locality preserving low-rank representation with Tikhonov regularization (KLP-LRR) for face recognition. KLP-LRR is a...
متن کاملKernel Locality Preserving Low-Rank Representation with Tikhonov Regularization
Classification based on Low-Rank Representation (LRR) has been a hot-topic in the field of pattern classification. However, LRR may not be able to fuse the local and global information of data completely and fail to represent nonlinear samples. In this paper, we propose a kernel locality preserving low-rank representation with Tikhonov regularization (KLP-LRR) for face recognition. KLP-LRR is a...
متن کاملBlock-Diagonal Constrained Low-Rank and Sparse Graph for Discriminant Analysis of Image Data
Recently, low-rank and sparse model-based dimensionality reduction (DR) methods have aroused lots of interest. In this paper, we propose an effective supervised DR technique named block-diagonal constrained low-rank and sparse-based embedding (BLSE). BLSE has two steps, i.e., block-diagonal constrained low-rank and sparse representation (BLSR) and block-diagonal constrained low-rank and sparse ...
متن کامل